Nikola Tesla's AC motor was a game-changer. But how does it work?
|
The magnetic field is constantly changing (because it's rotating) so, according to the laws of electromagnetism (Faraday's law, to be precise), the magnetic field produces (or induces, to use Faraday's own term) an electric current inside the rotor. If the conductor is a ring or a wire, the current flows around it in a loop. If the conductor is simply a solid piece of metal, eddy currents swirl around it instead.
Either way, the induced current produces its own magnetic field and, according to another law of electromagnetism (Lenz's law) tries to stop whatever it is that causes it—the rotating magnetic field—by rotating as well. (You can think of the rotor frantically trying to "catch up" with the rotating magnetic field in an effort to eliminate the difference in motion between them.) Electromagnetic induction is the key to why a motor like this spins—and that's why it's called an induction motor. |
|
Science
|
Technology
|
Engineering
|
Mathematics
|
Empowerment
|