Development of new prescription drugs and antidotes to toxins currently relies extensively on animal testing in the early stages of development, which is not only expensive and time consuming, it can give scientists inaccurate data about how humans will respond to such agents. But what if researchers could predict the impacts of potentially harmful chemicals, viruses or drugs on human beings without resorting to animal or even human test subjects? To help achieve that, a team of scientists and engineers at Lawrence Livermore National Laboratory is developing a “human-on-a-chip,” a miniature external replication of the human body, integrating biology and engineering with a combination of microfluidics and multi-electrode arrays. The project, known as iCHIP (in-vitro Chip-based Human Investigational Platform), reproduces four major biological systems vital to life: the central nervous system (brain), peripheral nervous system, the blood-brain barrier and the heart.
|
Science
|
Technology
|
Engineering
|
Mathematics
|
Empowerment
|